Arithmetic enrichments of classical results in enumerative geometry
What is arithmetic geometry? one uses alyesraic geometry to solve problems in number theory by studying agessaic varieties over arbitrary fields i.p not algebraically closed one
c.g. $\mathbb{Q}, \bar{H}_{q}, Q_{p}$

Problems in cuber theory: How many solutions
Bézout's theorem over (C $V_{i}=V\left(F_{i}\right) \subseteq \mathbb{C} \mathbb{P}^{n} \quad \operatorname{deg} F_{i}=d_{i}$

Then

$$
\sum_{p \in V_{1} \ldots, n v_{n}} m_{a} C t_{p}\left(v_{1} \ldots, V_{n}\right)=d_{i} \ldots \cdot d_{n}
$$

Proof: $V:=O\left(d_{1}\right) \oplus \ldots \oplus\left(d_{n}\right)$

$$
x:=q \mathbb{R}^{n} \hat{\jmath}^{\hat{F}}\left(F_{1}, \ldots, F_{h}\right)
$$

$$
\begin{aligned}
& \text { \# intersection } \begin{array}{c}
\text { pts or } \\
v_{1} \ldots v_{n}
\end{array} \quad=\begin{array}{c}
\text { zeros of } \\
\text { section } \\
\left(F_{1}, \ldots, F_{n}\right)
\end{array} \\
& =\operatorname{deg} C_{n}(V) \\
& =d_{1} \cdot . . d_{n}
\end{aligned}
$$

Over \mathbb{R} :
$V \rightarrow x$ oriented rank n vector bundle ($)$ ores a smooth closed e lV) oriented n-mfld

What is deg e(V)?

$$
V \rightarrow X=0
$$

(1) $\sigma\left(d_{i}^{\prime \prime}\right) \mathbb{R}^{\prime \prime} \mathbb{P}^{n}$

$$
O(2 a)-1, \mathbb{R} \mathbb{P}^{\prime}
$$

What does this mean?

Choose. oriented coordinates around?

- trivialization of V around P compatible wish orientation of V
locally around p,

$$
\begin{aligned}
& \sigma:{ }_{p} U \leqslant \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \operatorname{ind}_{p} \sigma:=\operatorname{deg}_{p} \sigma
\end{aligned}
$$

where $\left.\quad \operatorname{deg}_{p} \sigma=\operatorname{deg}\left(\frac{U}{u-\{p\}^{\circ}} \stackrel{\sigma}{\rightarrow} \mathbb{R}^{n} / \mathbb{R}^{n}, b\right\rangle\right)$

$$
\leadsto \begin{gathered}
S^{n} \stackrel{f}{\supset S^{n}} \\
H_{n}\left(S^{n}\right) \xrightarrow{f} \rightarrow H_{n}\left(S^{n}\right) \\
112 \\
x \\
1
\end{gathered}
$$

Poincare-Hopf theorem

$$
\operatorname{deg} e(V)=\sum_{\rho \in\{\sigma=0\}} \operatorname{ind}_{\rho} \sigma
$$

There is an anologue of the degree for an arsitrary field V. Comes from "Al'-homotopy the ory"

Morel's Al'degree: u arsitrany field

$$
\operatorname{deg} A^{\prime}:\left[\mathbb{P}_{k}^{n} / \mathbb{P}_{n}^{n-1}, \mathbb{P}_{u}^{n} / \mathbb{P}_{n}^{n-1}\right]_{A_{1}} \rightarrow G w(u)
$$

replace dey: $\left[S^{n}, S^{n}\right] \rightarrow \mathbb{X}$ ®ANㅔ-hdipy ciasies
heron Lasses

$$
f=s^{n}-s^{n}(-) \operatorname{deg} f
$$

$G W(k)$: group completion of isometry classes of mon-degererate quadratic forms / L

$$
\left.\begin{array}{c}
q_{1}: V_{1} \rightarrow k \quad, q_{2}: V_{2} \rightarrow u \\
q_{1} \oplus q_{2}: V_{1} \oplus V_{2} \rightarrow k \\
\otimes \rightarrow r i n g
\end{array}\right\}=\text { monoid }
$$

can always diagonalize: Can assume $\quad q\left(x_{1}, \ldots x_{n}\right)=a_{1} x_{1}^{2}+\ldots t a_{n} x_{n}^{2}$ $a_{i} \in K^{x}=k \backslash\{0\}$
generators for $G W(k):\langle a\rangle=a x^{2} a \in k /(x)^{2}$ relations:

1) $\langle a\rangle\langle b\rangle=\langle a b\rangle$
2) $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$
3) $\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=h$ hyperbolic
form

Examples: $\cdot G \omega(\mathbb{C})=\mathbb{Z}$

$$
\text { - } G \omega(\mathbb{R})=\mathbb{Z}\left[C_{2}\right]
$$

eluats of the form

$$
\begin{aligned}
&w<1\rangle+n\langle-1\rangle \\
& \text { • } G \omega\left(\mathbb{F}_{q}\right)=\mathbb{Z} \oplus \mathbb{Z}_{q} \oplus /\left(\left.\mathbb{F}_{q}^{x}\right|^{2}\right.
\end{aligned}
$$

$$
\text { - } G \omega\left(\mathbb{Q}_{p}\right)=\frac{G \omega\left(\mathbb{H}_{p}\right) \oplus G \omega\left(\mathbb{H}_{p}\right)}{\left\langle h_{1}-h\right\rangle}
$$

- $G \omega(\mathbb{Q})$: complicated

$$
\begin{aligned}
& \left.\omega(\mathbb{Q})=\oplus \omega\left(\mathbb{F}_{p}\right) \text { (}\right) \omega(\mathbb{R}) \\
& \text { print } \\
& P^{p} \neq 2 \mathbb{Z} / 2 \\
& \mathbb{Z}
\end{aligned}
$$

Idea: (Kass-Wichelgrer)
Replace $\operatorname{deg}_{p} \sigma$ by $\operatorname{deg}_{p}^{A \prime \prime} \sigma$ in PH theorem

Deft: A vector bundle $V \rightarrow X$ is relatively oientable if $\quad \pi$-variety \exists line bundle $\mathcal{L} \rightarrow x$

+ iso $\rho: \mathcal{F l o m}(\operatorname{det} T X, \operatorname{det} V) \stackrel{V_{2}}{\cong} \mathcal{L}^{\otimes 2}$
- coordinates define a section of dace def det TX
- trivialization defines a section of $\operatorname{det} V$
\longrightarrow these are compatible with rel orientation ρ if the induced section of Mom($\operatorname{det} 7 X$, $\operatorname{det} V)$ is sent to a square by ρ.

Ex: When is $V=O\left(d_{1}\right) \oplus \ldots\left(O\left(d_{n}\right)\right.$

$$
\frac{\downarrow}{\mathbb{P}_{k}^{n}}
$$

relatively orientally?

$$
\omega_{\mathbb{P}_{u}^{n}} \otimes \operatorname{det} V=O(\underbrace{-n-1+d_{1}+\ldots+d_{n}}_{\substack{\text { should } b e \\ \text { eves }}})
$$

Let $V \rightarrow X$ cismoth hevaricty be rel oriented $v b$ of rank $=\operatorname{din} X$ and $\sigma: X \rightarrow V$ a section with only isolated zeros

Deft (Kass-Wickelgren)

$$
\text { ind } \sigma:=\operatorname{deg}_{p}^{A{ }^{\prime}} \sigma \text { with rel or }
$$

Euler number

$$
n^{\text {PH }}(V, \rho):=\sum_{\substack{\text { zeros } \\ \text { of } \sigma}} \text { ind } \sigma \in G \omega(h)
$$

Fact (Bachmann-Wickelgren): This is
independent of the choice of the section σ.

Example: Lines on a smooth cubic surface $\quad X=V(f) \subseteq \mathbb{P}^{3}$ Aden 3

- There are always 27 lines on X (independent of the choice of X) when counted over \mathbb{C}.
- Over \mathbb{R} : There can be 3,7, 15 on 27 lines on X (depends on choice of X) but signed count always equals 3
- over K.lUass-Wichelgren: always get

$$
\begin{aligned}
& 15\langle 1\rangle+12\langle-1\rangle \in G W(\text { h }) \\
& \underbrace{\text { signature }}_{27} \\
& 3
\end{aligned}
$$

Over \mathbb{F}_{q} : If all lines are defined over $\mathbb{H}_{q} \Rightarrow$ lines that contribute <s> is even
\# Sines of type <s defined over Fra $_{\text {qa }}$ odd

+ \# Slims of type <10 defined over $\mathbb{F}_{q^{a}}$ acumen \mid is even

Example (Bézout):

$$
V=O\left(d_{1}\right) \oplus \ldots \oplus\left(d_{n}\right) \rightarrow \mathbb{P}_{u}^{n}
$$

is rel orientable if $\sum d_{i} \equiv n+1 \bmod 2$ In this case

What about the non-orientalle case? Not everything is possible:

$$
\frac{n=1: O(d) \rightarrow \mathbb{P}_{k}^{1} \quad(O d d}{\langle 1\rangle+\langle-1\rangle+\ldots\langle 1\rangle+\langle-1\rangle+\langle a\rangle}
$$

$$
d-1
$$

$$
\begin{aligned}
& \sum \operatorname{Tr}_{u(p) / 4}<\operatorname{det} \operatorname{Jac}\left(F_{11}, F_{n}\right)(p)> \\
& p \in V\left(F_{1}\right)_{\wedge} \ldots \cap\left(F_{t}\right) \\
& V \stackrel{q}{\rightarrow} k(p) \xrightarrow{\operatorname{Tr}_{k}(p) / h} K \\
& \| \in \text { always } \\
& \text { (Mclean) } \\
& d_{1} \ldots d_{n} \\
& h=\langle 1\rangle+\langle-1\rangle
\end{aligned}
$$

$n=2: \quad O\left(d_{1}\right) \oplus O\left(d_{2}\right) \rightarrow \mathbb{P}^{2}$
$d_{1}+d_{2}$ even

$$
\begin{aligned}
\langle 1\rangle+\langle-1\rangle+\ldots+\langle 1\rangle+ & \langle-1\rangle+\left\langle a_{1}\right\rangle+\ldots+\left\langle a_{d}\right\rangle \\
d & =\min \left(d_{1}, d_{2}\right)
\end{aligned}
$$

done using "tropical geometry" together Jaramillo pontes

Er:
rational curves of $\mathrm{deg} d$ on a quintic 3 -fold $\quad x=V(f) \leq \mathbb{P}^{4}$ $\operatorname{deg} 5$
deg 1: lines

$$
1445<1\rangle+1430<-1\rangle \in G \omega(6)
$$

(Levine, P.)
dy 2: cones

$$
\frac{609250}{2}-h
$$

deg 3: twisted cubic

$$
\begin{gathered}
\frac{317206375-765}{2} \cdot h+765 \cdot 17 \\
\in G \omega(G) \\
(\text { Levine - P.) }
\end{gathered}
$$

uses "localization"

